Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511584

RESUMEN

Survivin (BIRC5) is a tumor-associated antigen (TAA) overexpressed in various tumors but present at low to undetectable levels in normal tissue. Survivin is known to have a high expression in breast cancer (e.g., Ductal Carcinoma in situ (DCIS) and triple negative breast cancer). Previous studies have not compared survivin expression levels in DCIS tumor samples to levels in adjacent, normal breast tissue from the same patient. To ensure the effective use of survivin as a target for T cell immunotherapy of breast cancer, it is essential to ascertain the varying levels of survivin expression between DCIS tumor tissue samples and the adjacent normal breast tissue taken from the same patient simultaneously. Next-generation sequencing of RNA (RNA-seq) in normal breast tissue and tumor breast tissue from five women presenting with DCIS for lumpectomy was used to identify sequence variation and expression levels of survivin. The identity of both tumor and adjacent normal tissue samples were corroborated by histopathology. Survivin was overexpressed in human breast tissue tumor samples relative to the corresponding adjacent human normal breast tissue. Wild-type survivin transcripts were the predominant species identified in all tumor tissue sequenced. This study demonstrates upregulated expression of wild type survivin in DCIS tumor tissue versus normal breast tissue taken from the same patient at the same time, and provides evidence that developing selective cytotoxic T lymphocyte (CTL) immunotherapy for DCIS targeting survivin warrants further study.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Neoplasias de la Mama/metabolismo , Survivin/genética , Carcinoma Intraductal no Infiltrante/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Mama/metabolismo , Carcinoma Ductal de Mama/patología
2.
Vaccines (Basel) ; 9(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070152

RESUMEN

BACKGROUND: Persistent transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a COVID-19 pandemic. Several vaccines, conceived in 2020, that evoke protective spike antibody responses are being deployed in mass public health vaccination programs. Recent data suggests, however, that as sequence variation in the spike genome accumulates, some vaccines may lose efficacy. METHODS: Using a macaque model of SARS-CoV-2 infection, we tested the efficacy of a peptide-based vaccine targeting MHC class I epitopes on the SARS-CoV-2 nucleocapsid protein. We administered biodegradable microspheres with synthetic peptides and adjuvants to rhesus macaques. Unvaccinated control and vaccinated macaques were challenged with 1 × 108 TCID50 units of SARS-CoV-2, followed by assessment of clinical symptoms and viral load, chest radiographs, and sampling of peripheral blood and bronchoalveolar lavage (BAL) fluid for downstream analysis. RESULTS: Vaccinated animals were free of pneumonia-like infiltrates characteristic of SARS-CoV-2 infection and presented with lower viral loads relative to controls. Gene expression in cells collected from BAL samples of vaccinated macaques revealed a unique signature associated with enhanced development of adaptive immune responses relative to control macaques. CONCLUSIONS: We demonstrate that a room temperature stable peptide vaccine based on known immunogenic HLA class I bound CTL epitopes from the nucleocapsid protein can provide protection against SARS-CoV-2 infection in nonhuman primates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...